Public release 0 includes 586 samples, 12 rounds, 385 10X pools, 299 donors and 1,406,788 cells passing QC.
## Loading required package: HDF5Array
## Loading required package: DelayedArray
## Loading required package: stats4
## Loading required package: Matrix
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
##
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
##
## The following objects are masked from 'package:base':
##
## anyDuplicated, aperm, append, as.data.frame, basename, cbind,
## colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
## get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
## match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
## Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
## table, tapply, union, unique, unsplit, which.max, which.min
##
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
##
## The following objects are masked from 'package:matrixStats':
##
## colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
## colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
## colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
## colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
## colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
## colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
## colWeightedMeans, colWeightedMedians, colWeightedSds,
## colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
## rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
## rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
## rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
## rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
## rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
## rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
## rowWeightedSds, rowWeightedVars
##
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
##
## The following objects are masked from 'package:Matrix':
##
## expand, unname
##
## The following object is masked from 'package:utils':
##
## findMatches
##
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
##
## Loading required package: IRanges
## Loading required package: S4Arrays
## Loading required package: abind
##
## Attaching package: 'S4Arrays'
##
## The following object is masked from 'package:abind':
##
## abind
##
## The following object is masked from 'package:base':
##
## rowsum
##
## Loading required package: SparseArray
##
## Attaching package: 'DelayedArray'
##
## The following objects are masked from 'package:base':
##
## apply, scale, sweep
##
## Loading required package: rhdf5
##
## Attaching package: 'HDF5Array'
##
## The following object is masked from 'package:rhdf5':
##
## h5ls
## Sex
## Dx Female Male
## Control 70 79
## AD 71 79
Observe that fraction of variation across batches correlates with GC content of the corresponding gene. Also genes with higher counts per million show high variation across donor since more counts corresponds to a reduction in ‘shot noise’ due to low counts.
## R version 4.3.3 (2024-02-29)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: CentOS Linux 7 (Core)
##
## Matrix products: default
## BLAS/LAPACK: /hpc/packages/minerva-centos7/oneAPI/p_2024.1.0.560/toolkits/mkl/2024.1/lib/libmkl_gf_lp64.so.2; LAPACK version 3.11.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] broom_1.0.6 gridExtra_2.3
## [3] ggrepel_0.9.5 EnrichmentBrowser_2.32.0
## [5] org.Hs.eg.db_3.18.0 viridis_0.6.5
## [7] viridisLite_0.4.2 corrplot_0.92
## [9] RColorBrewer_1.1-3 scattermore_1.2
## [11] qvalue_2.34.0 kableExtra_1.4.0
## [13] lubridate_1.9.3 forcats_1.0.0
## [15] stringr_1.5.1 dplyr_1.1.4
## [17] purrr_1.0.2 readr_2.1.5
## [19] tidyr_1.3.1 tibble_3.2.1
## [21] tidyverse_2.0.0 scater_1.30.1
## [23] scuttle_1.12.0 cowplot_1.1.3
## [25] muscat_1.16.0 GSEABase_1.64.0
## [27] graph_1.80.0 annotate_1.80.0
## [29] XML_3.99-0.16.1 AnnotationDbi_1.64.1
## [31] DelayedArray_0.28.0 SparseArray_1.2.4
## [33] S4Arrays_1.2.1 abind_1.4-5
## [35] Matrix_1.6-5 zenith_1.4.2
## [37] dreamlet_1.1.23 variancePartition_1.33.15
## [39] BiocParallel_1.36.0 limma_3.58.1
## [41] ggplot2_3.5.1 zellkonverter_1.13.3
## [43] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
## [45] Biobase_2.62.0 GenomicRanges_1.54.1
## [47] GenomeInfoDb_1.38.8 IRanges_2.36.0
## [49] S4Vectors_0.40.2 BiocGenerics_0.48.1
## [51] MatrixGenerics_1.14.0 matrixStats_1.3.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 httr_1.4.7
## [3] doParallel_1.0.17 Rgraphviz_2.46.0
## [5] numDeriv_2016.8-1.1 tools_4.3.3
## [7] sctransform_0.4.1 backports_1.5.0
## [9] utf8_1.2.4 R6_2.5.1
## [11] metafor_4.6-0 mgcv_1.9-1
## [13] GetoptLong_1.0.5 withr_3.0.0
## [15] prettyunits_1.2.0 cli_3.6.2
## [17] labeling_0.4.3 sass_0.4.9
## [19] KEGGgraph_1.62.0 SQUAREM_2021.1
## [21] mvtnorm_1.2-5 blme_1.0-5
## [23] mixsqp_0.3-54 systemfonts_1.1.0
## [25] svglite_2.1.3 parallelly_1.37.1
## [27] invgamma_1.1 rstudioapi_0.16.0
## [29] RSQLite_2.3.6 generics_0.1.3
## [31] shape_1.4.6.1 gtools_3.9.5
## [33] metadat_1.2-0 ggbeeswarm_0.7.2
## [35] fansi_1.0.6 lifecycle_1.0.4
## [37] yaml_2.3.8 edgeR_4.0.16
## [39] mathjaxr_1.6-0 gplots_3.1.3.1
## [41] grid_4.3.3 blob_1.2.4
## [43] crayon_1.5.2 dir.expiry_1.10.0
## [45] lattice_0.22-5 beachmat_2.18.1
## [47] msigdbr_7.5.1 KEGGREST_1.42.0
## [49] pillar_1.9.0 knitr_1.46
## [51] ComplexHeatmap_2.18.0 rjson_0.2.21
## [53] boot_1.3-29 corpcor_1.6.10
## [55] future.apply_1.11.2 codetools_0.2-19
## [57] glue_1.7.0 data.table_1.15.4
## [59] vctrs_0.6.5 png_0.1-8
## [61] Rdpack_2.6 gtable_0.3.5
## [63] assertthat_0.2.1 cachem_1.1.0
## [65] xfun_0.43 rbibutils_2.2.16
## [67] Rfast_2.1.0 iterators_1.0.14
## [69] statmod_1.5.0 nlme_3.1-164
## [71] pbkrtest_0.5.2 bit64_4.0.5
## [73] progress_1.2.3 EnvStats_2.8.1
## [75] filelock_1.0.3 bslib_0.7.0
## [77] TMB_1.9.11 irlba_2.3.5.1
## [79] vipor_0.4.7 KernSmooth_2.23-22
## [81] colorspace_2.1-0 rmeta_3.0
## [83] DBI_1.2.2 DESeq2_1.42.1
## [85] tidyselect_1.2.1 bit_4.0.5
## [87] compiler_4.3.3 BiocNeighbors_1.20.2
## [89] basilisk.utils_1.14.1 xml2_1.3.6
## [91] scales_1.3.0 caTools_1.18.2
## [93] remaCor_0.0.18 digest_0.6.35
## [95] minqa_1.2.7 rmarkdown_2.27
## [97] basilisk_1.14.3 aod_1.3.3
## [99] XVector_0.42.0 RhpcBLASctl_0.23-42
## [101] htmltools_0.5.8.1 pkgconfig_2.0.3
## [103] lme4_1.1-35.2 sparseMatrixStats_1.14.0
## [105] highr_0.10 mashr_0.2.79
## [107] fastmap_1.2.0 rlang_1.1.3
## [109] GlobalOptions_0.1.2 DelayedMatrixStats_1.24.0
## [111] farver_2.1.2 jquerylib_0.1.4
## [113] jsonlite_1.8.8 BiocSingular_1.18.0
## [115] RCurl_1.98-1.14 magrittr_2.0.3
## [117] GenomeInfoDbData_1.2.11 munsell_0.5.1
## [119] Rcpp_1.0.12 babelgene_22.9
## [121] reticulate_1.37.0 RcppZiggurat_0.1.6
## [123] stringi_1.8.4 zlibbioc_1.48.2
## [125] MASS_7.3-60.0.1 plyr_1.8.9
## [127] parallel_4.3.3 listenv_0.9.1
## [129] Biostrings_2.70.3 splines_4.3.3
## [131] hms_1.1.3 circlize_0.4.16
## [133] locfit_1.5-9.9 reshape2_1.4.4
## [135] ScaledMatrix_1.10.0 evaluate_0.23
## [137] RcppParallel_5.1.7 tzdb_0.4.0
## [139] nloptr_2.0.3 foreach_1.5.2
## [141] future_1.33.2 clue_0.3-65
## [143] ashr_2.2-63 rsvd_1.0.5
## [145] xtable_1.8-4 fANCOVA_0.6-1
## [147] truncnorm_1.0-9 lmerTest_3.1-3
## [149] glmmTMB_1.1.9 memoise_2.0.1
## [151] beeswarm_0.4.0 cluster_2.1.6
## [153] timechange_0.3.0 globals_0.16.3